LaTex入门
1. 安装
2. 简单语法
最简单的Hello world.
打开WinEdt,建立一个新文档,将以下内容复制进入文档中,保存,保存类型选择为UTF-8。
1 2 3 4 | \documentclass{article} \begin{document} hello, world \end{document} |
然后在WinEdt的工具栏中找到编译按钮(在垃圾桶和字母B中间),在下拉菜单中选择XeTeX,并点击编译。
如果顺利的话,我们就可以顺利生成出第一个pdf文件,点击工具栏中的放大镜按钮就可以快速打开生成的pdf文件。
加入中文,标题,作者和注释后的Hello World.
1 2 3 4 5 6 7 8 9 10 11 | \documentclass{article} \usepackage{CJK} %中文1 \author{My Name} \title{The Title} \begin{document} \begin{CJK*}{GBK}{song} %中文2 \maketitle Hello World. \\ %回车 这里输入中文 \end{CJK*} %中文3 \end{document} |
章节和段落
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | \documentclass{article}
\usepackage{CJK}
\author{My Name}
\title{The Title}
\begin{document}
\begin{CJK*}{GBK}{song}
\maketitle
\section{一级标题} 中国……
\subsection{二级标题} Beijing is the capital of China.
\subsubsection{三级标题}
\paragraph{Tian'anmen Square}is in the center of Beijing
\subparagraph{Chairman Mao} is in the center of Tian'anmen Square
\subsection{二级标题}
\paragraph{Sun Yat-sen University} is the best university in Guangzhou.
\end{CJK*}
\end{document}
|
加入目录
将\maketitle改为\tableofcontents,即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | \documentclass{article}
\usepackage{CJK}
\author{My Name}
\title{The Title}
\begin{document}
\begin{CJK*}{GBK}{song}
\tableofcontents
\section{一级标题} 中国……
\subsection{二级标题} Beijing is the capital of China.
\subsubsection{三级标题}
\paragraph{Tian'anmen Square}is in the center of Beijing
\subparagraph{Chairman Mao} is in the center of Tian'anmen Square
\subsection{二级标题}
\paragraph{Sun Yat-sen University} is the best university in Guangzhou.
\end{CJK*}
\end{document}
|
加入公式
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | \documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
The Newton's second law is F=ma.
The Newton's second law is $F=ma$.
The Newton's second law is $$F=ma$$
The Newton's second law is \[F=ma\]
Greek Letters $\eta$ and $\mu$
Fraction $\frac{a}{b}$
Power $a^b$
Subscript $a_b$
Derivate $\frac{\partial y}{\partial t} $
Vector $\vec{n}$
Bold $\mathbf{n}$
To time differential $\dot{F}$
\end{document}
|
公式效果
The Newton’s second law is F=ma.The Newton’s second law is $F=ma$.
The Newton’s second law is $$F=ma$$
The Newton’s second law is [F=ma]
Greek Letters $\eta$ and $\mu$
Fraction $\frac{a}{b}$
Power $a^b$
Subscript $a_b$
Derivate $\frac{\partial y}{\partial t} $
Vector $\vec{n}$
Bold $\mathbf{n}$
To time differential $\dot{F}$

